
  

Basic Properties of Feedback 

 Part D: The Classical 

Three- Term Controllers 



Basic Operations of a Feedback Control 

Think of what goes on in domestic hot water thermostat: 

 The temperature of the water is measured. 

 Comparison of the measured and the required values 
provides an error, e.g. “too hot’ or ‘too cold’. 

 On the basis of error, a control algorithm decides what to 
do.  

 Such an algorithm might be:  

 If the temperature is too high then turn the heater off.  

 If it is too low then turn the heater on  

 The adjustment chosen by the control algorithm is applied 
to some adjustable variable, such as the power input to 
the water heater.  



Feedback Control Properties 

 A feedback control system seeks to bring the measured 
quantity to its required value or set-point. 

 

 The control system does not need to know why the 
measured value is not currently what is required, only that 
is so. 

 

 There are two possible causes of such a disparity: 

 The system has been disturbed.  

 The set point has changed. In the absence of external 
disturbance, a change in set point will introduce an 
error. The control system will act until the measured 
quantity reach its new set point.  



The PID Algorithm 

 The PID algorithm is the most popular feedback 
controller algorithm used. It is a robust easily 
understood algorithm that can provide excellent 
control performance despite the varied dynamic 
characteristics of processes. 

 

 As the name suggests, the PID algorithm consists of 
three basic modes: 

the Proportional mode, 

 the Integral mode 

& the Derivative mode. 



P, PI or PID Controller 

 When utilizing the PID algorithm, it is necessary to decide 
which modes are to be used (P, I or D) and then specify 
the parameters (or settings) for each mode used. 

 

 Generally, three basic algorithms are used: P, PI or PID. 

 

 Controllers are designed to eliminate the need for 
continuous operator attention. 

 Cruise control in a car and a house thermostat  

are common examples of how controllers are used to 

 automatically adjust some variable to hold a measurement 

 (or process variable) to a desired variable (or set-point)  



Controller Output 

 The variable being controlled is the output of the 
controller (and the input of the plant):  

 

 

 

 

 

 The output of the controller will change in response to a 
change in measurement or set-point (that said a change 
in the tracking error) 

provides excitation to the plant system to be controlled 



PID Controller 

 

 

 

 In the s-domain, the PID controller may 

be represented as: 

 

 

 In the time domain: 
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PID Controller 

 In the time domain: 

 

 

 The signal u(t) will be sent to the plant, and a new output 
y(t) will be obtained. This new output y(t) will be sent 
back to the sensor again to find the new error signal e(t). 
The controllers takes this new error signal and computes 
its derivative and its integral gain. This process goes on 
and on. 
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Definitions 

 In the time domain: 
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Controller Effects 

 A proportional controller (P) reduces error responses to 

disturbances, but still allows a steady-state error. 

 

 When the controller includes a term proportional to the 

integral of the error (I), then the steady state error to a 

constant input is eliminated, although typically at the 

cost of deterioration in the dynamic response. 

 

 A derivative control typically makes the system better 

damped and more stable. 



Closed-loop Response 

Rise time Maximum 

overshoot 

Settling 

time 

Steady-

state error 

P Decrease Increase Small 

change 

Decrease 

I Decrease Increase Increase Eliminate 

D Small 

change 

Decrease Decrease Small 

change 

 Note that these correlations may not be exactly accurate, 

because P, I and D gains are dependent of each other. 



Example problem of PID 

 Suppose we have a simple mass, spring, damper problem. 

 

 

 
 

 The dynamic model is such as: 

 

 Taking the Laplace Transform, we obtain: 

 

 The Transfer function is then given by: 
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Example problem (cont’d) 

 Let  

 

 By plugging these values in the transfer function: 

 

 

 The goal of this problem is to show you how each of  

                              contribute to obtain: 

 fast rise time, 

     minimum overshoot,  

no steady-state error. 
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Ex (cont’d): No controller 

 The (open) loop transfer function is given by: 

 

 
 

 

 The steady-state value for the output is: 
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Ex (cont’d): Open-loop step response 

 1/20=0.05 is the final 

value of the output to an 

unit step input. 
 

 This corresponds to a 

steady-state error of 

95%, quite large! 
 

 The settling time is 

about 1.5 sec. 

 



Ex (cont’d): Proportional Controller 

 The closed loop transfer function is given by: 
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Ex (cont’d): Proportional control 

 Let  
 

 The above plot shows 
that the proportional 
controller reduced both 
the rise time and the 
steady-state error, 
increased the overshoot, 
and decreased the 
settling time by small 
amount.  
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Ex (cont’d): PD Controller 

 The closed loop transfer function is given by: 
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Ex (cont’d): PD control 

 Let  
 

 This plot shows that 
the proportional 
derivative controller 
reduced both the 
overshoot and the 
settling time, and had 
small effect on the rise 
time and the steady-
state error.  
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Ex (cont’d): PI Controller 

 The closed loop transfer function is given by: 
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Ex (cont’d): PI Controller 

 Let  
 

 

 We have reduced the 
proportional gain because the 
integral controller also reduces 
the rise time and increases the 
overshoot as the proportional 
controller does (double effect). 

  

 The above response shows that 
the integral controller 
eliminated the steady-state 
error.  
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Ex (cont’d): PID Controller 

 The closed loop transfer function is given by: 

ipd

ipd

idp

idp

KsKsKs

KsKsK

ss

sKsKK
ss

sKsKK

sF

sX
















)20()10(

2010

/
1

2010

/

)(

)(
23

2

2

2



Ex (cont’d): PID Controller 

 Let  
 

 

 

 

 Now, we have obtained 

the system with no 

overshoot, fast rise 

time, and no steady-

state error.  
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Ex (cont’d): Summary 

PD P 

PI PID 



PID Controller Functions 

 Output feedback 

 from Proportional action 

compare output with set-point 
 

 Eliminate steady-state offset (=error) 

 from Integral action 

apply constant control even when error is zero 
 

 Anticipation 

 From Derivative action 

react to rapid rate of change before errors grows too 
big 



Proportional Controller  

 Pure gain (or attenuation) since: 

the controller input is error 

the controller output is a proportional gain  
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Change in gain in P controller 

 Increase in gain: 
 

  Upgrade both 
steady- 

          state and transient  

          responses 

   Reduce steady-state  

          error 
 

  Reduce stability! 

 



P Controller with high gain 



Integral Controller  

 Integral of error with a constant gain 

  increase the system type by 1 

  eliminate steady-state error for a unit step input 

  amplify overshoot and oscillations 
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Change in gain for PI controller 

 Increase in gain: 
 

  Do not upgrade steady- 

          state responses 

   Increase slightly  

          settling time  
 

  Increase oscillations  

          and overshoot! 

 



Derivative Controller  

 Differentiation of error with a constant gain 

  detect rapid change in output 

  reduce overshoot and oscillation 

  do not affect the steady-state response 
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Effect of change for gain PD controller 

 Increase in gain: 
 

  Upgrade transient  

          response 

   Decrease the peak 
and  

           rise time 
 

  Increase overshoot  

         and settling time! 

 



Changes in gains for PID Controller 



Conclusions 

 Increasing the proportional feedback gain reduces 
steady-state errors, but high gains almost always 
destabilize the system. 
 

 Integral control provides robust reduction in steady-
state errors, but often makes the system less stable. 
 

 Derivative control usually increases damping and 
improves stability, but has almost no effect on the 
steady state error 
 

 These 3 kinds of control combined from the classical PID 
controller 



Conclusion - PID 

 The standard PID controller is described by the equation: 
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Application of PID Control 

 PID regulators provide reasonable control of most 
industrial processes, provided that the performance 
demands is not too high. 

 

 PI control are generally adequate when plant/process 
dynamics are essentially of 1st-order. 

 

 PID control are generally ok if dominant plant dynamics 
are of 2nd-order. 

 

 More elaborate control strategies needed if process has 
long time delays, or lightly-damped vibrational modes  


