


Think of what goes on in domestic hot water thermos
» The temperature of the water is measured.

» Comparison of the measured and the required values
provides an error, e.g. “too hot’ or ‘too cold’.

» On the basis of error, a control algorithm decides what
do.

— Such an algorithm might be:
» If the temperature is too high then turn the heater o
» If it is too low then turn the heate

» The adjustment chosen by the control algorithm is a
to some adjustable variable, such as the power inp
the water heater.




» A feedback control system seeks to bring the mea
quantity to its required value or set-point.

» The control system does not need to know why the
measured value is not currently what is required, only
is so.

» There are two possible causes of such a disparity:
» The system has been disturbed.

» The set point has changed. In the absence of extern
disturbance, a change in set point will introduce a
error. The control system will act until the meas
quantity reach its new set point.



» The PID algorithm is the most popular feedbac
controller algorithm used. It is a robust easily
understood algorithm that can provide excellent
control performance despite the varied dynamic
characteristics of processes.

» As the name suggests, the PID algorithm consists of
three basic modes:

the Proportional mode,
the Integral mode
& the Derivative mode.



» When utilizing the PID algorithm, it is necessary to
which modes are to be used (P, | or D) and then spe
the parameters (or settings) for each mode used.

» Generally, three basic algorithms are used: P, Pl or Pl

» Controllers are designed to eliminate the need for
continuous operator attention.

— Cruise control in a car and a house thermosta

are common examples of how controllers are use
automatically adjust some variable to hold a measur
(or process variable) to a desired variable (or s




» The variable being controlled is the output of thé

controller (and the input af_map.LaQtiz
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provides excitation to the plant system to be co

» The output of the controller will change in responsg
change in measurement or set-point (that said a g
in the tracking error)
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» In the s-domain, the PID controller may
be represented as:

U(s) :(KIO +%+ dejE(s)

» In the time d

ain: d t
u(t) = K,e(t) @j e(t)dlt +‘—e(—)

proportional gain Integral gain d
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» In the time domain:

u(t) = K e(t) + K, j e(t)dt + K,

de(t)
dt

» The signal u(t) will be sent to the plant, and a new outp
y(t) will be obtained. This new output y(t) will be sent
back to the sensor again to find the new error signal e(
The controllers takes this new error signal and comp
its derivative and its integral gain. This process goes
and on.




» In the time domain:

u(t) = K,e)+ K, [ e®)dt + K, d‘;(tt)
de(t)
=K |e(t)+—=| e(t)dt+T,
( (t) j (t) " j
Integral time constant derivative time constant

\ /
where @/zﬂ% @=If<—‘j'\ derivati
\ /

proportional gain Integral gain




» A proportional controller (P) reduces error respon
disturbances, but still allows a steady-state error.

» When the controller includes a term proportional to th
integral of the error (l), then the steady state error t
constant input is eliminated, although typically at the
cost of deterioration in the dynamic response.

» A derivative control typically makes the system bet
damped and more stable.



Rise time | Maximum | Settling Ste
overshoot time state
Decrease Increase Small
change
Decrease Increase Increase
Small Decrease | Decrease
change

» Note that these correlations may not be exactly ac
because P, | and D gains are dependent of each o




» Suppose we have a simple mass, spring, damper pr

x(t)
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» The dynamic model js such as:
X Tbx T kx=f

» Taking the '—asf%li‘{f Bra” f%{‘(sﬂ f&? 5) =F(s)

» The Transfer functj@(\sbs then given by:

F(s) ms?+bs+k




» Let
m=1kg, b=10N.s/m, k=20N/m, f =1N

» By plugging these values in the transfer function:
X(s) 1

F(s) s?+10s+20

» The goal of this problem is to show you how each o

Ko Kiand Ky contribute to obtain:
fast rise time,

minimum overshoot,
no steady-state error.
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» The (open) loop transfer function is given by:

X(s) 1
F(s) s“+10s+20

» The steady-state value for the output is:
X(s) _
F(s)

X, =limx(t) = Iirrg sSX(S) = Iirrg SF(s)

t—o0




» 1/20=0.05 is the fi
 open-Loop step value of the output
unit step input.

» This corresponds to a
steady-state error
95%, quite large!

Displacement (m)
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Time (sec)

» The settling time is
about 1.5 sec.
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» The closed loop transfer function is given by:
K

P

X(S) _ s*+10s+20 _ Kp
F(s) 4, K, s°+10s+(20+K,)
s* +10s+20




Cloged-Loop Step: Kp=300
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» The above plot show
that the proportion
controller reduced b
the rise time and the
steady-state error,
increased the overshoo

0 r 1‘ 15 > and decreased the

Time (ec) settling time by sm
amount.
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» The closed loop transfer function is given by:
K, +KgS
X(S) _ s®+10s+20 _ Kp +KyS
F(s) 4, Ko +Kgs s +(10+K,)s+(20+K,)
s* +10s+ 20




Cloged-Loop Step: Kp=300, Kd=10
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» This plot shows that
the proportional
derivative controlle
reduced both the
overshoot and the
settling time, and had

0 05 Timei.;sec;. 15 2 small effect on ther

time and the steady
state error.
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» The closed loop transfer function is given by:
K, +K;/s
X(S) _ _s®+10s+20 _ KpS+K
F(s) 4. Ky +Kils  s°+10s* +(20+K)s+ K
s* +10s+ 20




Closed-Loop Step: Kp=30 Ki=70
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» We have reduced the
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» The above response show,
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> let Kk =30, K, =70

proportional gain because t
integral controller also red
the rise time and increases
overshoot as the proportiona
controller does (double effect

the integral controller,
eliminated the stea
error.



: Eis) K: | Uls i
Fis) b ‘ K it ——»
( } Kp+ids+— s2410s+20 [

» The closed loop transfer function is given by:

K, +Kss+K; /s
2
X(s) . s*+10s+20  _ KyS™ + K s+K

F(s) _1+ K, +Ks+Ki/s  s*+(10+K,)s?+(20+K
s* +10s+20
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Closed-Loop step: Kp=350 Ki=300 Kd=3300
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» Let K, =350, K; =300,
K, =5500

» Now, we have obtained
the system with no
overshoot, fast rise
time, and no stea
state error.
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» Output feedback
— from Proportional action
compare output with set:p

» Eliminate steady-state offset (=error)
— from Integral action
apply constant control even when error is /zer

» Anticipation
— From Derivative action
react to rapid rate of change before errors grow




» Pure gain (or attenuation) since:
the controller input is error

the controller output is a proportional gain

Ris) +[ ; :E{S} K D{j‘)# Gis) o)

E(s)K, =U(s) = u(t) = K e(t)
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» Increase in gain

— Upgrade both
steady-

state and trans
responses

— Reduce steady-st
error

— Reduce stabi
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» Integral of error with a constant gain
— increase the system type by 1
— eliminate steady-state error for a unit step input

— amplify overshoot and oscillations

E(s) K? _U(s) = u(t) = Kije(t)dt




» Increase in gain:

Kp=2 ey
I — Do not upgrade s
state responses
| — Increase slightly
settling time
P — Increase oscillati

Time (sec.)

and overshoot!




» Differentiation of error with a constant gain

— detect rapid change in output

5 reduce overshoot and oscillation

— do not affect the steady-state response

R(s) +[ ; : Eis) Kgs Urs) X

Gi(s)

E(s)K,;s=U(s)=u(t) =K,

de(t)

dt



» Increase in gain

K =2 ' Step Response
P From: U(l)

— Upgrade transi

response
) — Decrease the pe
% s and

rise time

— Increase overs
s and settlin
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Increasing the proportional feedback gain reduces
steady-state errors, but high gains almost always
destabilize the system.

Integral control provides robust reduction in steady-
state errors, but often makes the system less stable.

Derivative control usually increases damping and
improves stability, but has almost no effect on the
steady state error

These 3 kinds of control combined from the classic
controller



Conclusion - PID

» The standard PID controller is described by the equation:

U(s) :(Kp +%+ dejE(s)

T.

or U(s)= Kp[1+1s+Tds]E(s)




Application of PID Control

» PID regulators provide reasonable control of most
industrial processes, provided that the performanc
demands is not too high.

» Pl control are generally adequate when plant/proce
dynamics are essentially of 15t-order.

» PID control are generally ok if dominant plant dynami
are of 2"d-order.

» More elaborate control strategies needed if proces
long time delays, or lightly-damped vibrational



